The generator matrix

 1  0  0  1  1  1  1  1  1  1 2X+6  1  6  1  1  1  1 2X+6  1 2X+3 X+3  1  1  1  1  6  1 X+3  1  3  1  1 2X  1 2X  1  1  1  1 X+6  1  1  1 2X  1  1 X+3  1 X+6  3  1  1  1  1  1  1  1  1
 0  1  0  0  3 2X+7  8 X+7 2X+4 X+5  1  5  1  6 X+1 X+2 2X  1 X+2  1 X+6  X  7 2X+4  2  1 2X  1 X+7  1 2X+2 2X+3  0  X  1 X+5  8  2 X+8  1 2X+3 X+4 2X+1  1  1 2X+8  1  8  1  3  7  2 2X+2 2X+3 X+3  1  7  0
 0  0  1 2X+7  5 2X+6  3 2X+7  8 X+7 2X+7 X+5 X+5 X+4 2X+2 2X+3 2X+5 X+6 X+5  1  1  X 2X+6  4 X+4 X+7  3 2X+8  1 2X+5 2X+8 X+8  1  1 2X  0  8 2X+3 2X+4 X+5  5 X+8 X+6 X+1  0 X+4 X+6 2X+7  1  1 2X+3 X+5  5  1 2X+7 2X+8 X+2 2X+8
 0  0  0  6  6  0  0  0  0  0  0  0  0  0  6  6  3  6  3  3  3  3  3  6  3  6  6  6  3  0  6  0  0  6  3  3  3  0  6  3  3  3  6  0  3  0  3  6  6  6  6  6  0  0  3  3  0  3

generates a code of length 58 over Z9[X]/(X^2+6,3X) who�s minimum homogenous weight is 108.

Homogenous weight enumerator: w(x)=1x^0+552x^108+1104x^109+1818x^110+3482x^111+3570x^112+4518x^113+6072x^114+4938x^115+6192x^116+6646x^117+4896x^118+4716x^119+4586x^120+2406x^121+1692x^122+1194x^123+474x^124+18x^125+46x^126+66x^127+14x^129+36x^130+6x^132+6x^133

The gray image is a code over GF(3) with n=522, k=10 and d=324.
This code was found by Heurico 1.16 in 7.09 seconds.